Lunar Plane
 Coordinate System

Kenji MISHIMA,Ph.D.

Typical Coordinate Systems

In the case of the earth, a typical Coordinate System is following three coordinate systems.
(1) 3-Dimensional Coordinate System

The Cartesian Coordinate System with the direction of the north pole of rotation axis as the Z axis.
(2) Latitude and Longitude

Latitude and Longitude on the ellipsoid.
(3) Plane Coordinate System

The coordinate system of projection for the spherical surface into plane.

Lunar 3-D Coodinate System

Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015
B. A. Archinal ${ }^{1}$ - C. H. Acton ${ }^{2}$ • M. F. A'Hearn ${ }^{3}$ • A. Conrad ${ }^{4}$.
G. J. Consolmagno ${ }^{5}$ • T. Duxbury ${ }^{6}$ • D. Hestroffer ${ }^{7}$ • J. L. Hilton ${ }^{8}$ • R. L. Kirk ${ }^{9}$.
S. A. Klioner ${ }^{10}$ • D. McCarthy ${ }^{11}$. K. Meech ${ }^{12}$. J. Oberst ${ }^{13}$ • J. Ping ${ }^{14}$. P. K. Seidelmann ${ }^{15}$ • D. J. Tholen ${ }^{16}$. P. C. Thomas ${ }^{17}$. I. P. Williams ${ }^{18}$

The 3 Dimensional Coordinate System, Including the moon, have already been determined
by
the International Astronomical Union (IAU).

Lunar 3-D Coordinate System

Table 1 Recommended values for the direction of the north pole of rotation and the prime meridian of the Sun and planets

α_{0}, δ_{0}	Are ICRF equatorial coordinates at epoch J2000.0 Approximate coordinates of the north pole of the invariable plane are $\alpha_{0}=273^{\circ} .85$,
$T=$	Interval in Julian centuries (36,525 days) from the standard epoch
$d=$	Interval in days from the standard epoch
The standard epoch is JD 2451545.0, i.e., 2000 January 1 12 h TDB	

Fig. 1 Reference system used to define orientation of the planets and their satellites. For $\dot{W}(t)>0$, body rotation is prograde (e.g., Mercury, Jupiter). For $W(t)<0$, body rotation is retrograde (e.g., Venus, Uranus)

Lunar 3-D Coordinate System

3 The lunar coordinate system

The recommended coordinate system for the Moon is the mean Earth/polar axis (ME) system. There is an offset between this system and the principal axis (PA) system, sometimes called the axis of figure system (Davies and Colvin 2000).

The ME system is recommended because nearly all cartographic products have been aligned to it (ibid.). The offset between these coordinate systems of a point on the lunar surface is approximately 860 meters. Previous reports included the rotation and pole position for the ME system using closed formulae in Table 2. We are not continuing to provide those formulae as they are only accurate to approximately 150 m (e.g., Konopliv et al. 2001, Fig. 3). For high accuracy work (e.g., spacecraft operations, high-resolution mapping, and gravity field determination), it is recommended that a lunar ephemeris be used to obtain the libration angles for the Moon, from which the pole position and rotation can be derived.

The 3 Dimensional Coordinate System, for the Moon and Earth polar axis (ME) system is recommended.

Lunar 3-D Coordinate System

Table 3 Recommended rotation values for the direction of the positive pole of rotation and the prime meridian of selected dwarf planets, minor planets, their satellites, and comet
d is the interval in days from the standard epoch, i.e., J2000.0 = JD 2451545.0 , i.e., 2000 January 112 h TDB or from the given epoch for the listed comets. $\alpha_{0}, \delta_{0}, W$, and \dot{W} are as defined in the text
(1) Ceres
(2) Pallas
(4) Vesta
(21) Lutetia
(52) Europa
(243) Ida
$\alpha_{0}=291^{\circ} .418 \pm 0^{\circ} .03$
$\delta_{0}=1$
$W=$
$=$ Parameter for
$\alpha_{0}=$
$\delta_{0}=$
$W=$

$\delta_{0}=$
$W=$ their satellites,
$\delta_{0}=$
$\mathrm{w}=$ and
$\alpha_{0}=$
$\delta_{b}=$ Comet
$W=$

$a_{0}=$ have already been determined.
$b_{0}==$

$W=274^{\circ} .05+1864^{\circ} .6280070 d^{(\mathrm{f})}$

Lunar Latitude and Longitude

A Standardized

Lunar Coordinate System for the Lunar Reconnaissance Orbiter

The latitude and longitude of the lunar coordinate system has been determined by NASA

Previous Versions:
Version 1: 2006 August 23
Version 2: 2007 January 24
Version 3: 2008 January 30

Lunar Latitude and Longitude

operations planning, observational targeting, geographic identification of lunar landforms, and inter-mission communications.

The prime meridian (longitude 0) is the center visible from Earth.

The latitude and longitude of the lunar coordinate system has been determined by NASA

Figure 1. Planetocentric coordinates are expressed as right-handed coordinates with the origin at the center of mass of the body.

Plane Coordinate System

The 3 Dimensional and Latitude and Longitude coordinate system has already been determined, but there is no Planar Coordinate System.

The 3 D coordinate system is difficult to use on the lunar surface, and the latitude and longitude coordinate system is difficult to use because its units are angles

It is more efficient to carry out building layout and infrastructure maintenance on the moon in metric

Necessity of the plane coordinate system

When developing infrastructure on the moon, it is planned and designed on a flat surface using CAD

In cases such as complex plant construction, high layout accuracy is required.

Construction is difficult in latitude and longitude, therefore, construction is required in metric

Planar coordinate system needs to be prepared

Problems when projecting a spherical surface onto a plane

Meridian passing through the Greenwich Observatory Prime meridian (longitude 0°)

Problems when projecting a spherical surface onto a plane

Meridian passing through the Greenwich Observatory Prime meridian (longitude 0°)

Problems when projecting a spherical surface onto a plane

Meridian passing through the Greenwich Observatory Prime meridian (longitude 0°)

sum of interior angles of this triangle $=270^{\circ} \quad\left(\neq 180^{\circ}\right)$

Problems when projecting a spherical surface onto a plane

Moon is an ellipsoid

The shapes on the lunar surface are on a curved surface

When a figure on a spherical surface is projected onto the plane,
Angle
Distance
Area
cannot be projected correctly.

Euclidean geometry does not hold.

Mercator's Projection \& Transversal Mercator's Projection

The UTM coordinate system is commonly used as a globally used coordinate system. (UTM : Universal Transversal Mercator)

Mercator' s Projection (Cylindrical)

Next sheet

Transversal Mercator 's
Projection

Transversal Mercator Projection

In the case of Earth :
Reconsidering the width of each Zone
Greenwicn unservatory

Reconsidering the Origin Coordinate Values
The origin coordinates are not zero

Transversal Mercator Projection

In the case of Earth :

Reconsidering the width of each Zone

Universal Transversal Mercator on the Earth

In the case of Earth:

Earth's major axis : a, flattening facor : f, central meridian : λ_{0}
Latitude and Longitude (φ, λ) is calculated (x, y) by the following formula.

$$
x=x_{n}+k_{n} A\left(n^{\prime}+\sum^{3} \alpha_{i} \cos \left(2 i \xi^{\prime}\right) \sin \left(2 i n^{\prime}\right)\right)
$$

Reconsidering
the parameters of the formula for converting latitude and longitude to plane coordinates.

$$
y=y_{0}+k_{0} A\left(\eta^{\prime}+\sum_{j=1} \alpha_{j} \sin \left(2 j \xi^{\prime}\right) \cosh \left(2 j \eta^{\prime}\right)\right)
$$

$$
x_{0}=500[\mathrm{~km}], \quad y_{0}=10,000[\mathrm{~km}]
$$

Universal Transversal Mercator on the Earth

In the case of Earth :

Scale factor:
Scale Factor at Central meridian : $k_{0}=0.9996$ Grid Scale Factor : k
$A^{\prime} B^{\prime}=k \cdot A B$

Grid length A' B' is greater than
is greater than
ellipsoidal length AB
grid scale factor $: k>1$)

Central meridian in the Zone
Ellipsoid of Earth

Scale factor at Central meridian

Grid length A' B' is less than ellipsoidal length AB (grid scale factor : $k<1$)

$k=$ Reconsidering the parameters of the formula for computing the Scale factor and the Meridian convergence.

Meridian convergence :

$$
\gamma=\tan ^{-1}\left(\frac{\tau \sqrt{1+t^{2}}+\sigma t \tan \left(\lambda-\lambda_{0}\right)}{\sigma \sqrt{1+t^{2}}-\tau t \tan \left(\lambda-\lambda_{0}\right)}\right)^{m_{s}}
$$

Grid North

UPS Coordinate System

Universal Polar Stereographic (UPS) projection is a map projection method for the area around the North Pole and the South Pole, and is a plane coordinate system.

Combined with the
Universal Transverse Mercator (UTM) projection, it covers the entire earth surface.

UPS Coordinate System

Targets areas north of $84^{\circ} \mathrm{N}$ and south of $80^{\circ} \mathrm{S}$.

In order to connect with the target area of the UTM projection, it is assumed that it will extend outward by 0.5°.

UPS Coordinate System

Scale factor:

Grid length $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ is less than
ellipsoidal length AB
(grid scale factor : $k<1$)

On Earth, the polar regions are rarely used, so the accuracy of the scale factor is not important.

However, the moon is planned to be used in the south polar region.

Research optimal coefficients and parameters.

Issue of Planar coordinate system on the moon

Issue of Planar coordinate system on the moon

The moon's radius is about $1 / 4$ of the Earth's radius

Issue of Planar coordinate system on the moon

Width of Zone

Origin Factor

 and meridian convergence on the moon with a radius of a quarter of the earth

Projrction Plane Coordinate Syatem Plane

New Coordinate System

If the parameters of both UTM \& UPS coordinate systems are found to be inappropriate,
considering a new optimal plane coordinate system.

More detailed proposals

 will be made up at the next meetingThank you for your attention

