

LEO PNT with Nano Satellites

What is the New Space for GNSS?

Joshua Critchley-Marrows 7th Cis-Iunar PNT Conference 28th May 2024

PNT Today

PNT is firmly embedded into modern society today, including transportation, communications, finance and energy.

In fact, so firmly embedded is its value, in the US, **a loss to GNSS** will cost the economy **\$1 billion (¥130 billion) per day** (NIST study).

参考:内閣官房HP、デジタル田園都市国家構想実現会議第13回(令和5年6月2日)資料 https://www.cas.go.jp/jp/seisaku/digital_denen/dai13/04_muraiiinn.pdf

PNT Today

The economic value of the GNSS industry is expected to increase greatly over the next decade.

This is especially the case for the **Asia-Pacific** (to share **47% of the GNSS market**).

* Remaining segments includes Space, Forestry, Insurance and Finance, Energy and Raw Materials

'EUSPA GNSS Market Report 2024', EUSPA

PNT Under Threat

Politics

PRC jamming and spoofing endanger shipping, threaten civilian air

navigation

♠ 621 ■ 4 minute read

PNT Under Threat

Target	Impact	Region	Source
Jamming and spoofing across the Middle East and Ukraine confound civilian pilots, including Qantas	Disruption and safety risks to air traffic	Russia, Ukraine, Middle East	New York Times (2023)
Russia performs anti-satellite missile test capable of impacting GPS	Heightened risk of GNSS failure, disrupting global economy	Russia	Inside GNSS (2021)
Iran jams GPS on ships in Strait of Hormuz	Disruption and safety risks to shipping and maritime	Persian Gulf	GPS World (2019)
GPS jamming and spoofing attacks creating circular patterns in the Port of Shanghai	Disruption and safety risks to shipping and maritime	China Sea	The Maritime Executive (2019)
Australian Qantas pilots subject to GPS jamming from supposed Chinese warships	Disruption and safety risks to air traffic	China Sea	Australian Aviation (2023)
GPS jamming disrupts Australian motocross	Disruption to events and surrounding area, including motorists and critical infrastructure	Melbourne	<i>CNET</i> (2013)
SBAS outage significantly affected trust and operations in agriculture and shipping	Disruption and safety risks to shipping and maritime Disruption to farmers and mining	Australia	ABC (2023)
Nine Galileo satellite clocks have stopped working	Heightened risk of GNSS failure, disrupting global economy	Europe	BBC (2017)
Multiple timing issues have been experienced with GLONASS satellites	Heightened risk of GNSS failure, disrupting global economy	Russia	ICONCOX (2013)
Three atomic clocks fail on Indian regional GNSS NAVIC	Heightened risk of GNSS failure, disrupting global economy	India	GPS World (2017)
GPS ground infrastructure is hacked every day	Heightened risk of GNSS failure, disrupting global economy	USA	New York Times (2023)

'A Time and a Place for Resilience', *FrontierSl*

PNT Under Threat

Vulnerabilities of

GN55

A Time and a Place for Resilience, *FrontierSI*

Definitions of Resilient PNT

Where it concerns issues to PNT, and to ensure its resilience, it is best to consider the literature.

Commonly adopted in ______ military fields

The largest market —

Resilient PNT

Ensures the ability the PNT service will recover and/or continue operation, with some acceptable degradation to satisfy critical needs, in the face of adversity.

Robust PNT

The use of a suite of technology that ensures PNT services will recover and/or continue, with some acceptable degradation to satisfy critical needs, in the face of adversity.

Augmented PNT

Assured PNT

Remove doubt that PNT services will

be continuous and available by verbal

and/or written confirmation.

The use of technology that is dependent on GNSS to improve performance metrics such as accuracy, precision, availability, continuity and integrity.

Alternative PNT

The use of a technology that is independent of GNSS to calculate PNT information that meets the same critical application needs. 'Ensuring PNT resilience: A global review of navigation policies and roadmaps', *University of Tokyo*

To ensure the continuity and availability

Maritime Sector is in trouble, especially...

Ghost ships, crop circles, and soft gold: A GPS mystery in Shanghai

A sophisticated new electronic warfare system is being used at the world's busiest port. But is it sand thieves or the Chinese state behind it?

MIT Technology Review

From Russia with love for Christmas: Jamming Baltic GPS

<u>Perhaps we should</u> <u>start here?</u>

Area of GPS interferences Medium 2.10% Magin > 10% Mag

What are the performance requirements?

Published in 'IALA R-129 GNSS Vulnerabilities and Mitigation Measures'

APPENDIX 1 SUGGESTED MINIMUM MARITIME USER REQUIREMENTS FOR GENERAL NAVIGATION – BACKUP SYSTEM

		System le	evel parameters		Service level parameters			
	Absolute Accuracy		Integrity		Availability % per 30	Continuity % over 15	Coverage	Fix interval (seconds)
	Horizontal (metres)	Alert limit (metres)	Time to Alarm ² (seconds)	Integrity Risk (per 3 hours)	days	minutes ³		
Ocean	1000	2500	60	10-4	99	N/A ²	Global	60
Coastal	100	250	30	10-4	99	N/A ²	Regional	15
Port approach and restricted waters	10	25	10	10 ⁻⁴	99	99.97	Regional	2
Port	1	2.5	10	10-4	99	99.97	Local	1
Inland Waterways	10	25	10	10-4	99	99.97	Regional	2

 Table 2
 Suggested minimum maritime user requirements for general navigation – backup system

Notes: 1. This table is derived from IMO Resolution A.915(22).

2. Continuity is not relevant to ocean and coastal navigation

3. IMO Resolution A.1046(27) amended the Continuity Time Interval to 15 minutes, rather than 3 hours as originally required in IMO Resolution A.915(22).

4. This table should be read in conjunction with paragraph 2.1 and 2.2. Although these are suggested minimum requirements, a Risk Assessment will include many variables that may alter the minimum requirements. Refer to IALA Guideline on the Provision of Aids to Navigation for Different Classes of Vessels, including High Speed Craft, Dec. 2003 for details of the variables of different waterways, ships and environments

Target Domains

Our Solutions

Our micro satellites to meet various demonstration and business needs

- Flexible and efficient production system
- Multiple manufacturing technologies

Our Solutions

VDES(VHF Data Exchange System)

VDES(VHF Data Exchange System)

AE VDES Satellites 1st Gen.

- Size: W6U (100 x 226.3 x 366 mm)
- Power: 50W
- TT&C: S-band
- Mission data downlink: X-band

Satellite Constellation

- 50~100 Satellites
- Coverage from 60°N to 60°S at all times

Next Generation Marine AIS – VHF Data Exchange System

One of the most significant challenges to LEO PNT is the allocation of spectrum for supporting services.

VDES offers the opportunity to provide a supplementary, dedicated pseudocode on an already ITU supported frequency allocation, with a ready market.

Reported attacks across the world on GNSS – including jamming, spoofing, cyber and kinetic weapons.

GNSS is at risk for maritime vessels, and ensuring resilient services are essential.

Known as R-Mode, these LEO PNT signals may operate from 157-162 MHz.

VHF would require much larger jamming and spoofing equipment.

Could this be a first generation LEO PNT?

Challenges Ionospheric Factor

The **ionosphere** is a major challenge at the VHF.

The ionospheric delay according to the atmospheric model of 'P.531-15' will cause a delay of over 100+ m – highly variable according to current atmospheric activity.

How to remove it?

By introducing ionospheric modelling, the delay can be reduced to approximately 30-50% for VDES.

Still, it is very poor at high ionospheric activity - above 1 km in some cases. Other methods are needed...

TECU : Total Electron Content Unit

ITU-R P.531-15

Challenges Channel Performance

Another consideration is the **channel model** offered by a VDE-SAT R-Mode.

Each message could use an existing or implement a dedicated pseudocode for transmission.

We are confined by the standard...

How much could be allocated?

How to design?

What is the rate of transmission?

Only **8% of the signal bandwidth** can be dedicated to delivering an R-Mode.

ITU-R M.2092-1

Challenges Channel Performance

Various VDES parameters have been established for each signal waveform.

VHF data exchange-satellite downlink identification parameters						
SAT-MCS-0.50-1	SAT-MCS- 1.50-1	SAT-MCS- 3.50-1	SAT-MCS- 0.100	SAT-MCS- 0.150		
25	26	27	28	29		
50 100 150						
		0.25	8			
	42.0 90.0 141.0					
33.6	72.0 112.8			112.8		
8	8 N/A 2					
4.2	3.	3.6	36.0	56.4		
		90				
		8				
		2392.0	IC7			
10046	80371		86112	134908		
14/14 30/30 47/47			47/47			
		0.41/0.41	20			
48	2	27	48			
10	3	35	32			
480	9	45	1536			
1004	22	2268 2690		4214		
BPSK/ CDMA	π/4-0 (00	2PSK /11)	BPSK/CDMA			
0 (N/A)						
N/A	N	N/A N/A				
N/A	2	27	N/A			
	Inge-satellite do	satellite downlink ider SAT-MCS-0.50-1 SAT-MCS-1.50-1 25 26 50 42.0 33.6 N 4.2 33 4.2 33 10046 80 14/14 48 10 3 480 9 1004 22 BPSK/ CDMA π/4-6 N/A N N/A 1	satellite downlink identification pa SAT-MCS-0.50-1 SAT-MCS- 1.50-1 SAT-MCS- 3.50-1 25 26 27 50 0.25 42.0 33.6 N/A 8 4.2 33.6 90 4.2 33.6 90 10046 80371 2392.0 10046 80371 14/14 48 27 10 35 480 945 1004 2268 BPSK/ CDMA π/4-QPSK (00 /11) 0 (N/A) 0 (N/A) N/A 27	unge-satellite downlink identification parameters SAT-MCS-0.50-1 SAT-MCS- 1.50-1 SAT-MCS- 3.50-1 SAT-MCS- 0.100 25 26 27 28 50 100 0.25 100 42.0 90.0 33.6 72.0 8 N/A 72.0 4.2 33.6 36.0 90 2392.0 2392.0 10046 80371 86112 101046 80371 86112 10046 80371 86112 1004 2268 2690 BPSK/ π/4-QPSK BPSK/ CDMA (00 /11) BPSK/ 0 (N/A) N/A N		

Critical parameters include:

- Channel bandwidth
- Symbol number
- Roll-off filtering / cut-off
- Symbol / chip rate
- Modulation
- Burst length

Parameter	SAT-MCS-	SAT-MCS-	SAT-MCS-	SAT-MCS-	SAT-MCS-
	0.50-1	0.50-2	1.50-1	0.100	0.150
Symbol Number	13,128	80,336	80,343	172,164	269,720
Roll-Off Cutoff	0.25	0.25	0.25	0.25	0.25
Bandwidth	50 kHz	50 kHz	50 kHz	100 kHz	150 kHz
Symbol Rate	33,600 -/s	33,600 -/s	33,600 -/s	72,000 -/s	112,800 -/s
Ramp-up/-down	14/14	14/14	14/14	30/30	47/47
Burst Length	90 slots	15 slots	90 slots	90 slots	90 slots

J. Šafář, A. Grant, and M. Bransby, 'Performance bounds for VDE-SAT R-Mode', *International Journal of Satellite Communications and Networking*, vol. 41, no. 2, pp. 134–157, 2023, doi: <u>10.1002/sat.1429</u>.

Challenges Channel Performance

Under separate channel considerations, initially introduced by research from the **UK General Lighthouse Authority**, modelling of Ziv-Zakai (modification to the Cramer-Rao Bound) can indicate potential performance.

*Custom employs a **dedicated Gold Code** with a 150 kHz bandwidth signal.

SAT-MCS-0.100, SAT_MCS-0.150 and Custom performs best - each using the highest bandwidth.

J. Šafář, A. Grant, and M. Bransby, 'Performance bounds for VDE-SAT R-Mode', *International Journal of Satellite Communications and Networking*, vol. 41, no. 2, pp. 134–157, 2023, doi: <u>10.1002/sat.1429</u>.

Challenges A New Ephemeris

What about the **navigation message**?

We have proposed an extension to the traditional Kepler parameters to account for additional orbital dynamics in LEO.

The validity interval is reduced sharply – satellite visibility time is approximately 10 min...

Cuc-n

		loe	Ephen
t _{op}	CEI Data sequence propagation time of week	Ω_{0-n}	Longitude
ΔA ****	Semi-major axis difference at reference time	ΔΩ****	Rate of rig
• A	Change rate in semi-major axis	i _{0-n}	Incl
۸	Mean Motion difference from	IDOT	
Δn_0	Rate of mean motion difference	C _{is-n}	Amplitude
%	from computed value	Cic-n	Amplitude of
Δn_0	Mean anomaly at reference time	0.0-11	1
М	Eccentricity	C _{rs-n}	Amplitude
IMI _{0-n}	Argument of perigee	C _{rc-n}	Amplitude o
en			
ω _n		C _{us-n}	Amplitude of
1			

GPS ICD: 'IS-GPS-200N' (2022), US Department of Defense

Ephemeris data reference time of week
Longitude of Ascending Node of Orbit Plane at Weekly Epoch
Rate of right ascension difference
Inclination angle at reference time
Rate of inclination angle
Amplitude of the sine harmonic correction term to the angle of inclination
Amplitude of the cosine harmonic correction term to the angle of inclination
Amplitude of the sine correction term to the orbit radius
Amplitude of the cosine correction term to the orbit radius
Amplitude of the sine harmonic correction term to the argument of latitude
Amplitude of the cosine harmonic correction term to the argument of latitude

GNSS derived orbit propagated to 30 min validity interval

Precise orbit propagated to 30 min validity interval

VDES R-Mode Potential Performance

Scenario : Stationary ship on the ocean for 10 min.

Constellation Size : ~50 satellites

Orbit : Sun-Synchronous Orbit

Update Interval : 15 s

Frequency : 161.275 MHz

Monte-Carlo is performed over many orbital scenarios.

Performs best at polar regions because of orbit design.

Is this performance sufficient however – need to overcome the ionosphere!

Solutions for PNT High-Precision and Critical Applications

Thank you for listening