

About Us ▼ Our Work -

Space4SDGs *

Information for... ▼

Events *

Space Object Register 🔻

Documer

Our Work > International Committee on GNSS > Working Groups > Working Group B

Working Group: Enhancement of GNSS Performance, New Services and Capabilities

► Joint Working Group Session on Lunar Positioning Navigation and Timing (PNT), 25 - 26 June 2024, Vienna, Austria 月測位(Lunar PNT) (Hybrid Format)

Working Group Systems, Signals and Services

► Workshop on Low Earth Orbit (LEO) Positioning Navigation and Timing (PNT) Systems, 26 - 27 June 2024, Vienna, 地球低軌道測位(LEO PNT) Austria (Hybrid Format)

Joint Lunar PNT Session at ICG Intersessional held on 25th and 26th June in Vienna

Day 1

Confirmed Presentations:←

- LNIS PNT WG: LunaNet: Interoperability for Lunar PNT, Cheryl Gramling (NASA)
- USA: Lunar PNT System Update, Speaker: Cheryl Gramling (NASA) ←
- USA: Lunar GNSS Receiver Experiment (LuGRE), Speaker: Joel Parker (NASA)
- Europe: Moonlight LCNS and Lunar Pathfinder: European contribution to lunar Communication and Navigation Services, Speaker: Dr Javier Ventura-Traveset, Moonlight Programme Navigation Manager (ESA)←
- Japan: Japan Lunar Navigation Satellite System (LNSS) and Its Contribution Towards Lunar Augmented Navigation Service, Speaker: Masaya Murata (JAXA)←
- China: The Envision of the Earth-Moon and Deep Space Communication-Navigation-Remote Sensing Integrated Constellation System, Speaker: HE Xiongwen (CAST)
- China: Verification of BDS SSV and Analysis of BDS/GNSS Application in Lunar Vicinity, Speaker: WANG Yanguang (CAST Xi'an)←
- India: Lunar Pseudolite system, Speaker: Ashish Shukla (virtual)

LunaNet: Interoperability for Lunar PNT

Presented by: Cheryl Gramling, NASA

Contributors:

Juan Crenshaw, NASA

Floor Melman, ESA

Richard Swinden, ESA

Masaya Murata, JAXA

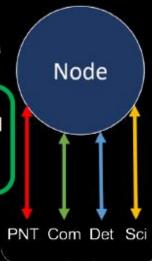
June 25, 2024

International Committee on GNSS

Intercessional

Vienna, Austria

LunaNet Overview




- A flexible scalable architecture for providing communications and navigation services to all lunar missions
- Disaggregated approach allows for phased implementation of infrastructure as driven by user needs and technology developments
- Architecture implementation comprised of International and Commercial interoperable lunar surface, lunar orbiting, and earthbased elements
- Incorporates in-situ capabilities to detect events and distribute situational alerts
- Is fully compatible with and promotes future deployments at Mars or any other destination

LunaNet Service Types

- Communications Services (Com): Data transfer services capable
 of moving addressable and routable data units between nodes in a
 single link or over a multi-node, end-to-end path via communications
 or networking services.
- Position, Navigation, and Timing Services (PNT):
 Services for position and velocity determination, and time synchronization and dissemination. This includes search and rescue location services.
- Detection and Information Services (Det): Services providing detection of events in order to generate timely alerts for human and asset safety and protection. These services publish other beneficial information to users as well.
- Science (Sci): Services that use the RF and/or optical capabilities of the node as a science instrument or part of an instrument.

Service Interfaces

Just as the Internet and GNSS have transformed our lives on Earth, LunaNet will transform lunar science and exploration.

Lunar Systems Relationships

Moonlight

LunaNet

Framework for Standardized Interoperable Services, umbrella under which many providers collectively work. Architecture originally documented by IOAG Lunar Communications Architecture WG. Interoperability defined in a specification.

ESA's instantiation of

LunaNet Services

Lunar Comm.
Relay and
Navigation
System
(LCRNS)

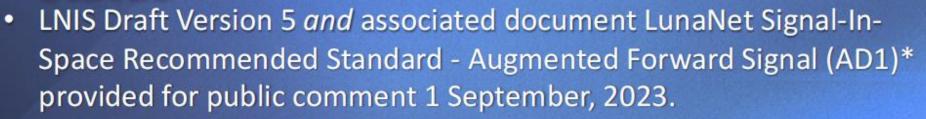
NASA's instantiation of LunaNet Services– a LunaNet Service Provider (LNSP)

Currently scoped for Initial Operating Capability Lunar Navigation Satellite System (LNSS)

Japan's instantiation of LunaNet • Services

Lunar
Reference
System (LRS)
Components
(includes Time)

Others


e.g. other orbiting systems, 3GPP (surface cell towers), users

A canonically defined set of components for consistent, accurate, and safe navigation.

Interoperability defined in Applicable Document 5 (AD5).

LunaNet Interoperability Specification Status

**A Cesa

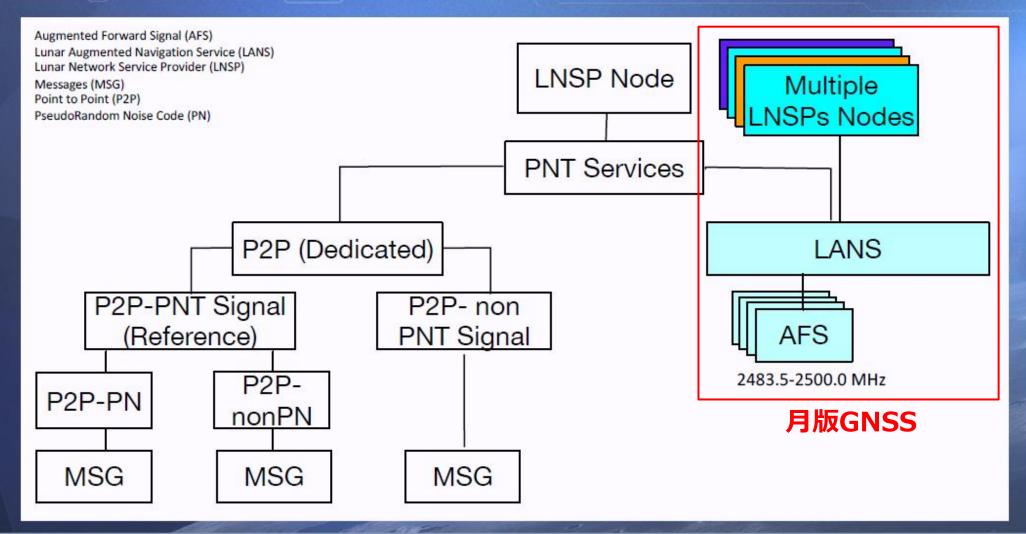
- Comments received 1 December, 2023.
- LNIS Working Groups dispositioned comments collectively among the three agencies.
- Document updates currently underway, focusing on near-term needs for required services
 - Address comments
 - Confirm parameters based on analysis
 を力バーする una Net 1.0

LunaNetのnear-term needs をカバーするLunaNet 1.0

 Future LNIS updates to complete LunaNet 1.0 specification that covers near term needs.

LNIS version 5 and LSIS version 1 are available in Draft form.

https://www.nasa.gov/directorates/heo/scan/engineering/lunanet interoperability


South Pole Region Service Volume

^{*} Technical paper and presentation available in ION GNSS+ 2023 proceedings: https://www.ion.org/gnss/abstracts.cfm?paperID=12341

LunaNet Framework PNT Services

PNT Services rely on definition, adoption, and maintenance of common lunar geodetic and time systems.

Lunar Communications and PNT

Presented by: Cheryl Gramling, NASA

Contributors:

Juan Crenshaw, NASA

June 25, 2024

International Committee on GNSS

Intercessional

Vienna, Austria

Lunar Systems Relationships

Moonlight

LunaNet

Framework for Standardized Interoperable Services, umbrella under which many providers collectively work. Architecture originally documented by IOAG Lunar Communications Architecture WG. Interoperability defined in a specification.

anthis presentation

Lunar Comm. Relay and Navigation System (LCRNS) +

NASA's instantiation of LunaNet Services– a LunaNet Service Provider (LNSP)

Currently scoped for Initial Operating Capability

Japan's instantiation of LunaNet • Services

ESA's instantiation of LunaNet Services Lunar Navigation Satellite System (LNSS)

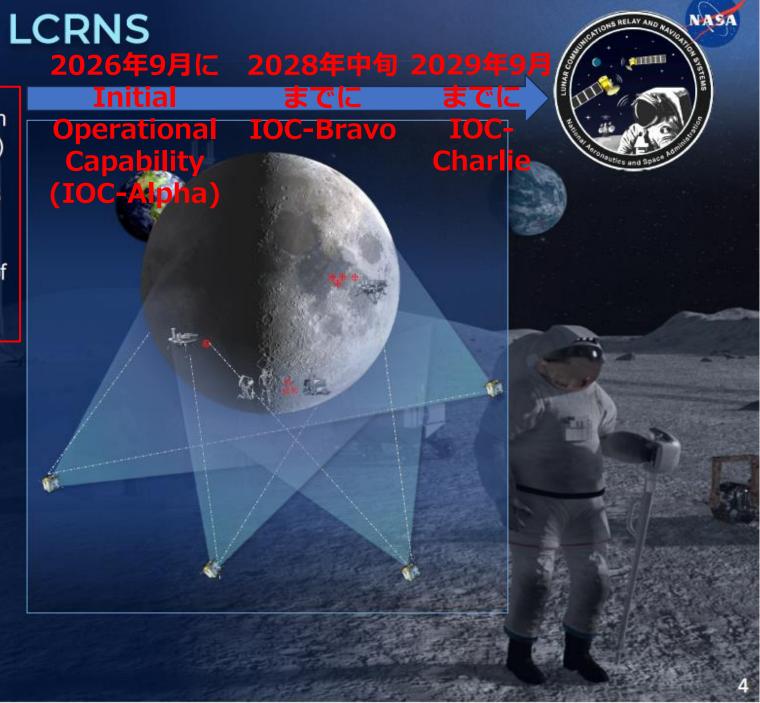
e.g. other orbiting systems, 3GPP (surface cell towers), users

Others

Lunar
Reference
System (LRS)
Components
(includes Time)

A canonically defined set of components for consistent, accurate, and safe navigation.

Interoperability defined in Applicable Document 5 (AD5).


Initial Capability Defined for LCRNS

 IOC phase will begin Sept 2026 with IOC-Alpha with a minimum of one Augmented Forward Signal (AFS) broadcast over the South Pole region.

 IOC-Bravo by mid-2028 with a minimum of two AFS over the same South Pole region.

 Service continues over an expanded South Pole volume with IOC-Charlie broadcasting a minimum of four AFS by Sept 2029, also meeting a requirement for GDOP for a limited portion of an Earth day.

- The LCRNS AFS will comply with the LunaNet Interoperability Specification.
- LCRNS orbit(s) will be defined by the service provider and are expected to meet the Signal-in-Space-Error.
- It is expected that LCRNS will be capable of providing two-way measurements from Point-to-Point signals.
- Service delivery is reliant on defined lunar geodetic system and lunar time.

LCRNS IOC-C Service Volume

LCRNS IOC-C Nav Service Volume

South Pole Service Volume

(-90° up to -75° latitude, 200 km altitude);

AFS/LANS available with GDOP <6 for 40% of Earth Day;

P2P (PNT-over-comm) links expand the offerings.

FUTURE Minimum Service Volume
Full lunar nav global service volume;
Continuous service;
Global capability.

European Roadmap under coordination with ESA

STEP 1: LUNAR PATHFINDER

Low-rate satellite communications service + Moon GNSS Receiver

Development

Pathfinder Service

2025 2025年12月

STEP 2: MOONLIGHT LCNS CONSTELLATION

High-data rate satellite communications and navigation service

Design

Development

Initial Services Full Services

2021

2022

2023

2024

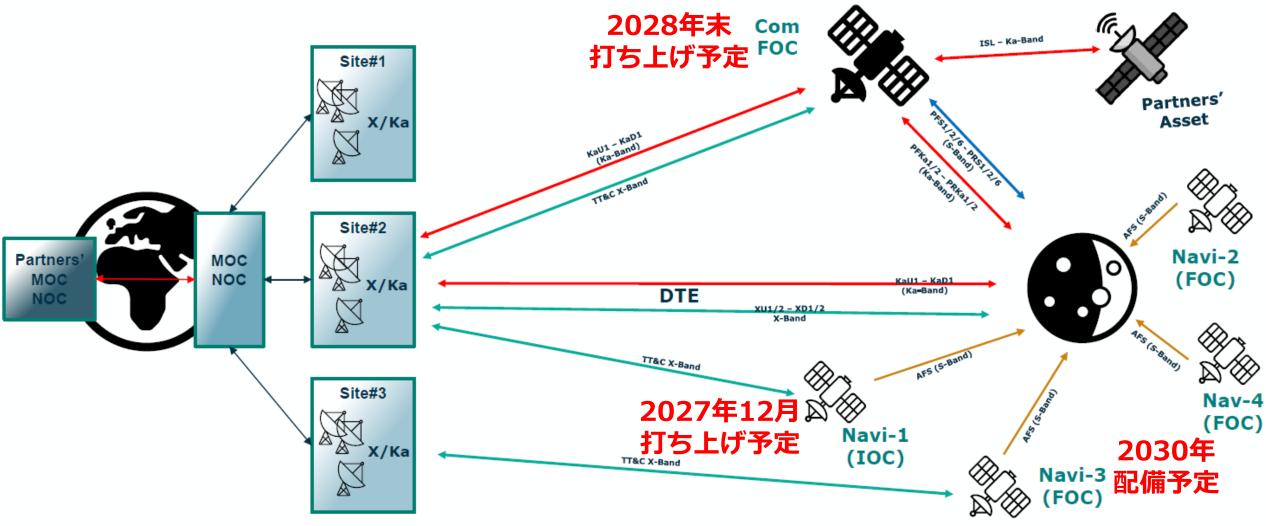
2025

2026

2027

2028

2029

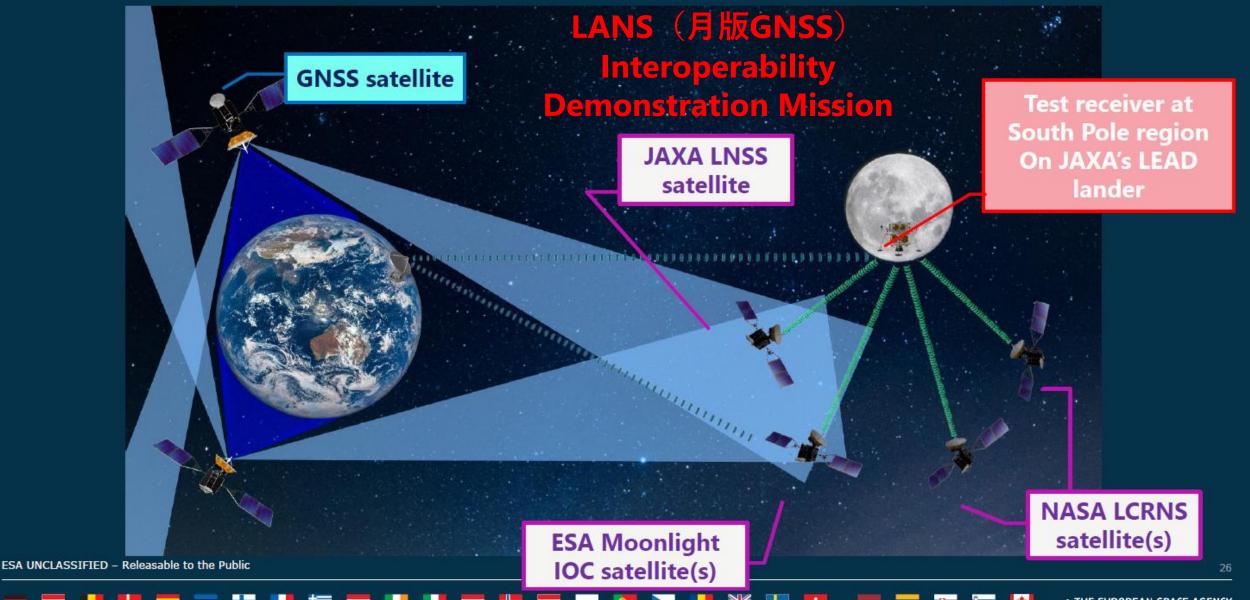

2030

ESA UNCLASSIFIED – Releasable to the Public

Moonlight: Mission Architectural Concept (notional)

Links are named in-line with LunaNet spec

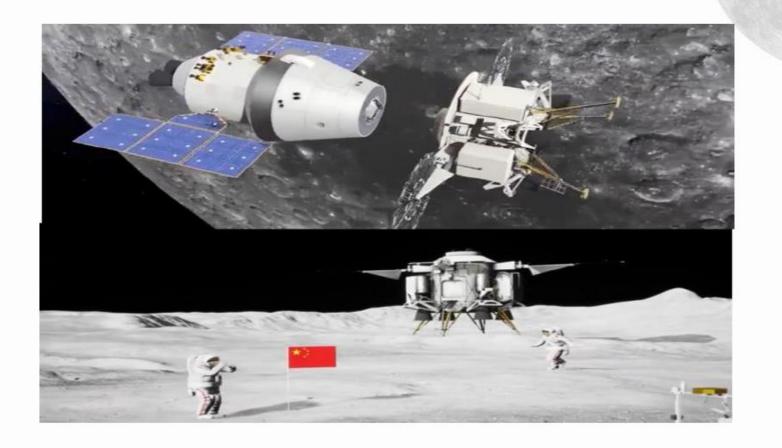
ESA UNCLASSIFIED – Releasable to the Public 1



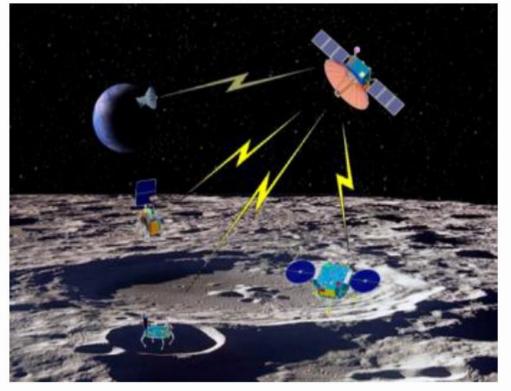
First-ever lunar PNT interoperability demonstration planned for 2028 ESA / NASA / JAXA: Towards an international LANS System

Beijing Institute of Spacecraft System Engineering, CAST

Xiongwen He Hui Yang June 2024


Current Situation and Envision of Deep Space Exploration in China

- In the coming year, China will continue to carry out Lunar exploration project, such as high-precision Lunar polar region landing ,and carry out the construction of International Lunar Research Station(ILRS).
- China will continue to carry out planetary exploration project, complete missions like sampling and returning from Mars, exploring the Jupiter scope, sampling from near-Earth asteroids, exploring the comets belt, and demonstrate plans for exploring the margin of solar system.


Current Situation and Envision of Deep Space Exploration in China

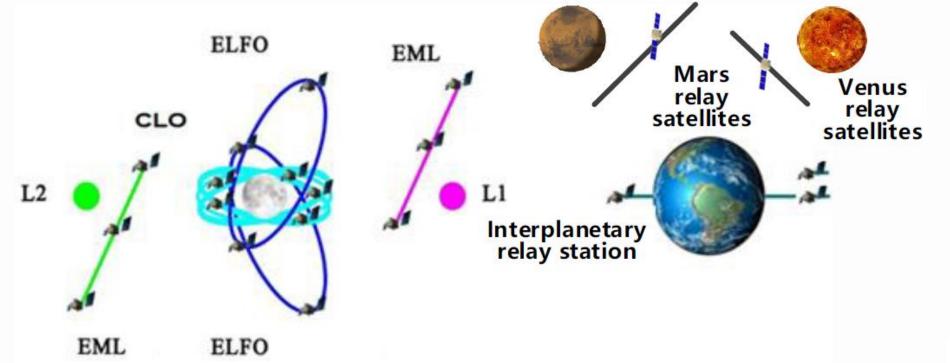
 Before 2030, China will achieve a manned landing on the moon, and in the long term, it will further promote the development of new industries such as the utilization of in-situ lunar resources.

2.2 Analysis of existing GNSS and Lunar Communication capabilities 鵲橋(じゃっきょう) 2号

- (2) Capability of Lunar relay communication
- In March 2024, China launched a new lunar relay satellite, QueQiao-2 which operates in the lunar elliptical frozen orbit and supported Chang'e-6, will also support follow-up missions and carry out a serial of experiments.

3.2 Envision of Prospective Scheme

2. Physical Architecture


Elliptical Lunar Frozen Orbit

Support users on the lunar surface and orbit through ELFO and CLO satellites.

■ Build backbone link between Earth and Moon through

Interplanetary Relay Station and EML satellites.

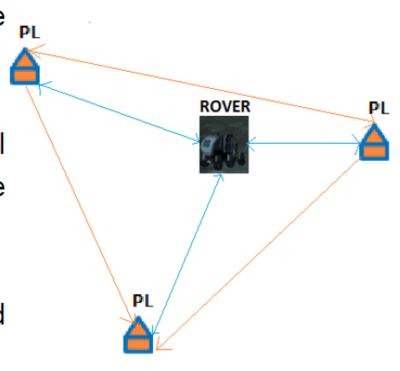
■ Build backbone link between Earth and Mars/Venus through Interplanetary Relay Station and Mars/Venus relay satellites.

ICG Inter-sessional Meeting

Pseudolite System for Lunar PNT

ICG Intersessional Meeting Vienna, 25 June 2024

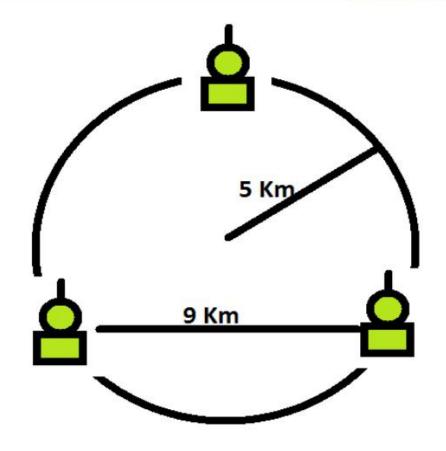
Dr. Ashish K Shukla SAC- ISRO, INDIA


Autonomous Pseudolite System for Lunar Navigation Relative Reference Frame

In the absence of any Lunar navigation system, standalone
 Pseudolite System is one of the possible options.

 Pseudolite relative Self-Positioning using Bi-directional Ranging in case absolute locations of Pseudolite transceivers are not available.

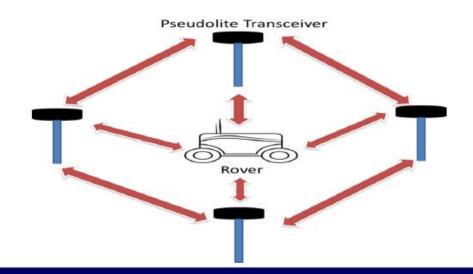
 Autonomous system & independent of any satellite based system for Lunar PNT.

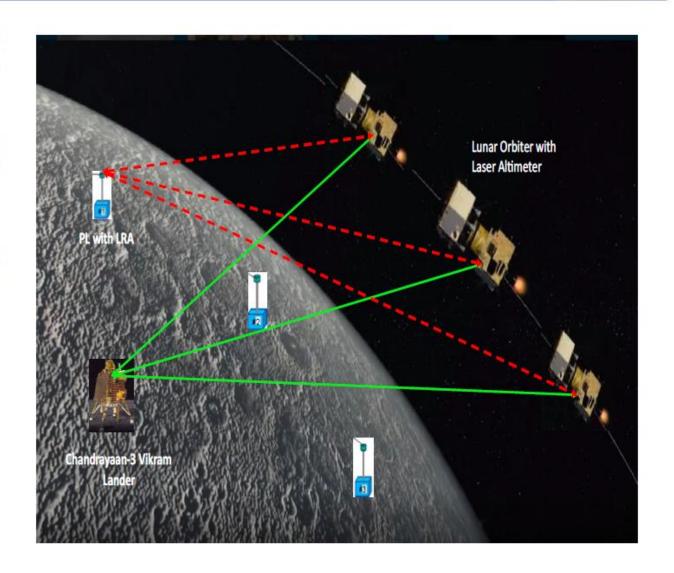


Configuration, Service Area & Targeted Accuracy

- A circular area with radius of 5 km is proposed to be the considered as the service area.
- Minimum 3 Pseudolite Transceivers are required for 2D position.
- Maximum distance (LoS) between Pseudolite Transceiver
 & Rover is 10 km.
- Distance between the Pseudolites is around 9 Km.

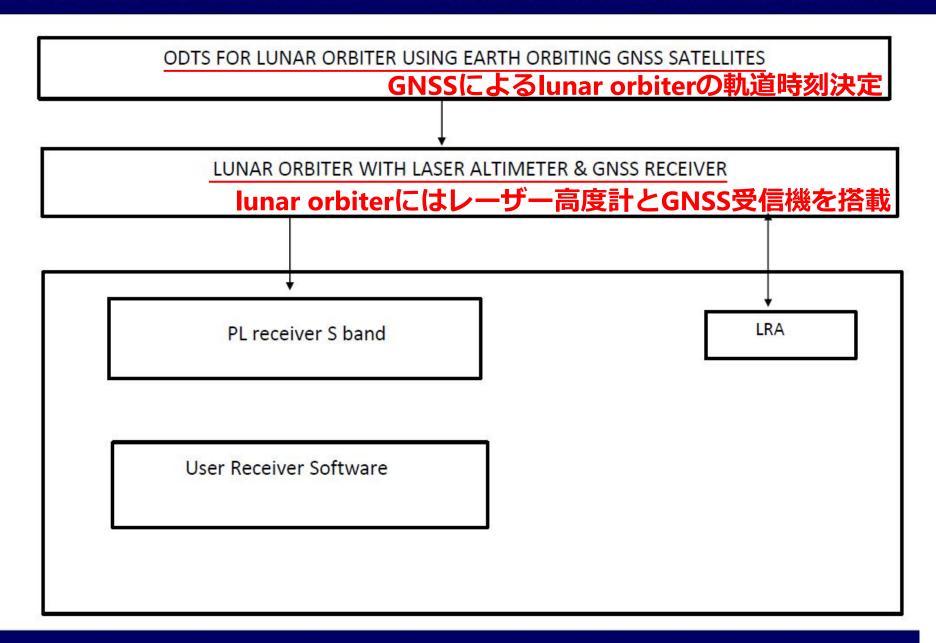
2D Position Accuracy (m)	Service Area
Sub- metre Level	10 Km LoS




इसरो 🖂

Absolute Positioning using Pseudolite System with LRA, orbiter & GNSS satellites

- Location determination of Pseudolite transceivers can be done with Laser Retro-Reflector Array (LRA) onboard lunar lander.
- A small LRA (shown as placed on Chandrayaan-3 lander) on the Moon can be detected by an orbiting Laser Altimeter on-board lunar orbiter.
- Once Pseudolite transceiver locations are determined in lunar reference frame, absolute positioning of rover can be done using bidirectional ranging.

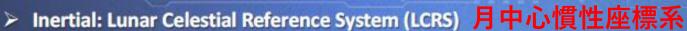


Absolute Location Determination of Pseudolite Transceiver

Day 2

1. Lunar spectrum (30 minutes) 月測位で使う周波数帯に関する議論

 Lunar PNT Spectrum Overview and World Radio Conference update, Cathy Sham (NASA), Chair, Lunar Martian Spectrum Group, Space Frequency Coordination Group (SFCG) (virtual)


2. Lunar reference frames & timing (1 hour) 月測位で使う座標系・時系の議論

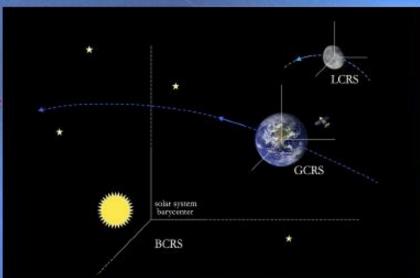
Topics: Approach, development status, challenges, cross-region collaboration/integration, approach to interoperability and compatibility

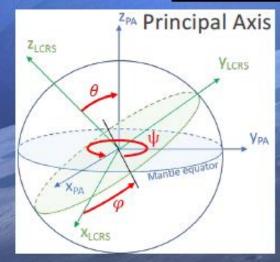
Presentations:

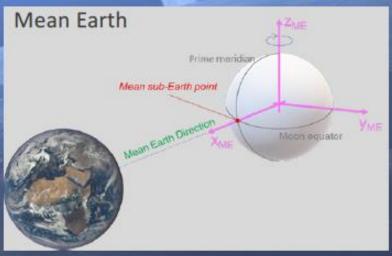
- Lunar Foundational Reference Systems and Time: LunaNet Perspective, Masaya Murata (JAXA), for the LNIS PNT WG
- USA Timing Policy Document Overview, Cheryl Gramling (NASA)
- Lunar Reference Frame and Time Reference, Werner Enderle (ESA)

Lunar Reference Frame

 Analog to locally inertial Geocentric Celestial Reference System that is realized by International Celestial Reference Frame (ICRF).


Body-Fixed: International Lunar Reference System (ILRS)


 Would be realized by the International Lunar Reference Frame (ILRF).


- · Two currently established frames:
 - PA: The Principal Axes reference frame is connected to the moments of inertia of the body (and thus derived from the angular momentum vector); the system where the axes align to the directions of the three largest moments of inertia.
 - ➤ ME: The Mean Earth reference frame defines the z-axis as the mean rotational pole, and the prime meridian is defined by the mean Earth direction
- A constant, three-angles rotation relates PA to the derived ME frame; the constants depend on the gravity field and a physical libration theory.
- Differ by 860 m on the lunar surface.
- The current ME definitions (used by LRO, etc) were established circa 2008, at the time of DE421, using pre-GRAIL gravity model LP150Q (Konopliv et al. 2001, Icarus).
- ILRF: Additional (including in-situ) observations likely to inform an improved frame in the future.

P中心回転座標系 Preference for Navigation

Lunar Time

Following the GNSS paradigm, LunaNet PNT services will distribute time.

Options are under evaluation; and must consider both the provider and user aspects.

Considerations:

地球のGNSSと同様に、

- what accuracy is required for navigation and science precision; Luna Netは月に時刻情報を提供する
- which geoid should the time scale represent;
- are there aspects to be defined by convention;
- how to format time in the message;
- ensure the ability to refer time to UTC;
- make it easy to achieve consistency among community.

Understanding of multi-body relativistic effects

Primary secular drift is ~58.7 microseconds/day from Earth Geocentric Coordinate Time (TCG) to Lunar Coordinate Time (TCL);

Periodic terms introduce additional variability.

座標系と同様に、月の時系に関する 国際的な議論が続いている

Consultation is underway with international subject matter experts in time systems and relativity.